Изменения

Перейти к: навигация, поиск
Нет описания правки
=== A. Биопечать ===
Одним из наиболее сложных применений аддитивного производства является изготовления скаффолдинга. Для специфических требований восстановления перидонта, многофазовые скаффолды имеют значительные преимущества, так как они способствуют [https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%B0%D1%80%D1%82%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F компартментализированному] заживлению тканей.<ref group="original-sources" name="7-ivanovski"/><ref group="original-sources" name="8-obregon"/> В то время, как данная стратегия является многообещающей, подход требует оптимизации и обширного тестирования на животных и, в конце-концов, клинических исследованиях на человеке. Учитывая сильные стороны адиттивного (био)производства, ожидаются интересные разработки в области восстановительной периодонтологии. Одна из таких разработок включает в себя технологии био-производства, такие, как биопечать, которая подразумевает печать всех компонентов, формирующих определённую ткань, вместе с живыми клетками, интегрированными в матричеый материал для получения структур, аналогичных естественным.<ref group="original-sources" name="9-groll"/> Хотя применение био-печати для изготовления оральных тканей находится всё ещё на ранних стадиях, данная стратегия показала интересные результаты в различных практических исследованиях и выглядит многообещающей, развиваясь за пределы шаблонов и моделей.<ref group="original-sources" name="10-park"/> Тем не менее, для успешного перевода технологии в область клинического применения, необходимо разработать дорожную карту, которая включает в себя исследования, требуемые для одобрения FDA и пометку "CE" на ранних стадиях процесса. В дополнение к этим общим сертификатам, существует срочная потребность в методических рекомендациях и протоколах для стандартизации в области аддитивного био-производства. Соответственно, эти производственные и инжигиринговые стандарты должны быть совмещены с нюансами биологии. И, самое главное, нужно принять во внимание тот факт, что биопечать, с точки зрения практического подхода, направлено на персонализацию под конкретного пациента. Таким образом одной из крупнейших проблем в этой области является стандартизация при сохранении возможности персонализации.
=== B. Современные технологии производства ===
В текущем цифровом веке цифрового производства такие технологии, как сканеры для компьютерной томографии (КТ сканирование костей) и для магнитно-резонансной томографии (МРТ для мягких тканей), используются для изучения и создания трёхмерных компьютерных моделей любой повреждённой кости или мягкой ткани в человеческом теле.<ref group="original-sources" name="11-bernd"/><ref group="original-sources" name="12-diffen"/><ref group="original-sources" name="13-grenda"/> Эти модели могут быть импортированы в <abbr title="Система Автоматизированного Проектирования">САПР</abbr> для создания моделей-реплик повреждённых областей. Этот процесс позволяет в дальнейшем создать и произвести сложные пористые структуры био-скаффолдинга с помощью аддитивного быстрого прототиптрования (RP), также известного, как 3D-печать, или, в более общем смысле, аддитивного производства. Существует несколько видов технологий аддитивного <abbr title="Rapid Prototyping">RP</abbr>-производства -- которые, как правило, отражают способ формирования готового изделия. Все техники используют схожий процесс, описанный ниже, с различиями стадии печати (изготовления.) Обратите внимание, что подпроцесс конвертирования в машинные команды выполняется через сохранения <abbr title="Система Автоматизированного Проектирования">САПР</abbr>-файла в формат <code>.STL</code> (стереолитография.) Рисунок 1 показывает процесс, который используется в аддитивном производстве.
== III. Типы технологий аддитивного производства ==
=== Источники из оригинальной статьи ===
<references group="original-sources">
<ref name="1-skalak">Skalak, R. and C.F. Fox, Tissue engineering: proceedings of a workshop, held at Granlibakken, Lake Tahoe, California, February 26-29, 1988. Vol. 107. 1988: Alan R. Liss.</ref><ref name="2-langer">Langer, R. and J. Vacanti, Tissue engineering. Science 260: 920-926.TISSUE ENGINEERING: THE UNION OF BIOLOGY AND ENGINEERING, 1993. 98.</ref><ref name="3-nair">Nair, L.S., S. Bhattacharyya, and C.T. Laurencin, Development of novel tissue engineering scaffolds via electrospinning. Expert opinion on biological therapy, 2004. 4(5): p. 659-668.</ref><ref name="4-sichert>Sichert, J.A., et al., Quantum size effect in organometal halide perovskite nanoplatelets. Nano letters, 2015. 15(10): p. 6521-6527.</ref><ref name="5-park">Park, G.E. and T.J. Webster, A review of nanotechnology for the development of better orthopedic implants. Journal of Biomedical Nanotechnology, 2005. 1(1): p. 18-29.</ref><ref name="6-shrivastava">Shrivastava, S. and D. Dash, Applying nanotechnology to human health: revolution in biomedical sciences. Journal of Nanotechnology, 2009. 2009.</ref><ref name="7-ivanovski">Ivanovski, S., C. Vaquette, S. Gronthos, D. W. Hutmacher, and P. M.Bartold. Multiphasic scaffolds for periodontal tissue engineering. J.Dent. Res. 93:1212–1221, 2014.</ref><ref name="8-obregon">Obregon, F., C. Vaquette, S. Ivanovski, D. W. Hutmacher, and L. E. Bertassoni. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J. Dent. Res. 94:143S–152S, 2015.</ref><ref group="original-sources" name="bernd">Bernd, B., Marc A.: Computational aspects of fabrication. IEEE Xplore, Published Comp. Graph. Appl IEEE 33(6), Nov–Dec, 2013. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6682932. Accessed 6 Aug 2014</ref><ref group="original9-sources" name="diffen">CT Scan versus MRI: diffen.com. http://www.diffen.com/difference/CT_Scan_vs_MRI. Accessed 10 Aug 2014</ref><ref name="groll">Groll, J., T. Boland, T. Blunk, J. A. Burdick, D. W. Cho, P. D. Dalton, B. Derby, G. Forgacs, Q. Li, V. A. Mironov, and L. Moroni. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001, 2016.</ref><ref name="10-park">Park, C. H., H. F. Rios, A. D. Taut, M. Padial-Molina, C. L. Flanagan, S. P. Pilipchuk, S. J. Hollister, and W. V. Giannobile. Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng. Part C 20:533–542, 2014.</ref><ref name="11-bernd">Bernd, B., Marc A.: Computational aspects of fabrication. IEEE Xplore, Published Comp. Graph. Appl IEEE 33(6), Nov–Dec, 2013. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6682932. Accessed 6 Aug 2014</ref><ref name="12-diffen">CT Scan versus MRI: diffen.com. http://www.diffen.com/difference/CT_Scan_vs_MRI. Accessed 10 Aug 2014</ref><ref name="13-grenda">Grenda, E.: Medical applications of rapid prototyping. January 2007. http://www.additive3d. com/med_lks.htm. Accessed 12 Aug 2014</ref>
<ref name="14-additive-fabrication">Additive Fabrication: 2009. http://www.custompartnet.com/wu/additive-fabrication. Accessed 12 Aug 2014</ref>
<ref name="15-yen">Yen, H., Tseng, C., Hsu S., Tsai, C.: Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled type П collagen. Biomed. Microdevices 11, 615–624, December 2008. http://link.springer.com.libraryproxy.griffith.edu.au/article/10.1007%2Fs10544-008-9271-7. Accessed 4 Aug 2014</ref>
<ref name="16-dao">Dao, D.: Precision Engineering & Prototyping. Lecture Notes. Rapid Prototyping & Reverse Engineering, ENG3313, School of Engineering, Griffith University, Gold Coast, (2014)</ref>
<ref name="17-bose">Bose, S., Vehabzadeh S., Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504, December 2013. http://ac.els-cdn.com/S136970211300401X/1-s2.0-S136970211300401X-main.pdf?_tid=4828c698-625b-11e4-82b2-00000aacb361&acdnat=1414910672_1265a1484f587bc95051d74847f93832. Accessed 6 Aug 2014</ref>
<ref name="18-murphy">Murphy, C.M, Haugh, M.G. O’Brien, F.J.: The effect of mean pore size on cell attachment, proliferation and migration in collagen glycosaminoglycan scaffolds for tissue engineering. Dublin, Ireland. Department of Anatomy, Royal College of Surgeons, Biomaterials. ch.31(3), pp. 461–466 (2010)</ref>
</references>

Навигация