Изменения

Нет описания правки
=== B. Современные технологии производства ===
[[File:Am-process-diagram.jpg|thumb|Рис. 1 -- Диаграмма процесса аддитивного быстрого прототипирования.]]]
 
В текущем цифровом веке цифрового производства такие технологии, как сканеры для компьютерной томографии (КТ сканирование костей) и для магнитно-резонансной томографии (МРТ для мягких тканей), используются для изучения и создания трёхмерных компьютерных моделей любой повреждённой кости или мягкой ткани в человеческом теле.<ref group="original-sources" name="11-bernd"/><ref group="original-sources" name="12-diffen"/><ref group="original-sources" name="13-grenda"/> Эти модели могут быть импортированы в <abbr title="Система Автоматизированного Проектирования">САПР</abbr> для создания моделей-реплик повреждённых областей. Этот процесс позволяет в дальнейшем создать и произвести сложные пористые структуры био-скаффолдинга с помощью аддитивного быстрого прототиптрования (RP), также известного, как 3D-печать, или, в более общем смысле, аддитивного производства. Существует несколько видов технологий аддитивного <abbr title="Rapid Prototyping">RP</abbr>-производства -- которые, как правило, отражают способ формирования готового изделия. Все техники используют схожий процесс, описанный ниже, с различиями стадии печати (изготовления.) Обратите внимание, что подпроцесс конвертирования в машинные команды выполняется через сохранения <abbr title="Система Автоматизированного Проектирования">САПР</abbr>-файла в формат <code>.STL</code> (стереолитография.) Рисунок 1 показывает процесс, который используется в аддитивном производстве.
=== A. Fused Deposition Modelling (FDM) ===
[[Файл:Am-fdm.jpg|thumb|Рис. 2 -- Fused Deposition Modelling (FDM)]]
 
Слой за слоем, геометрия поперечного сечения детали выкладывается с помощью экструдирования материала в виде лески (филамента) через сопло с контролируемой температурой нагрева. После того, как расходный материал выходит из сопла, он затвердевает и прикрепляется к слою ниже.<ref group="original-sources" name="14-additive-fabrication"/> Материалы, используемые в данной технологии -- это, в основном, термопластики, такие, как: ABS, Polycarbonate, биоразлогаемый PLA или PLGA<ref group="original-sources" name="15-yen"/>, а также материалы с низкой температурой плавления.<ref group="original-sources" name="16-dao"/> Эта технология известна грубостью поверхности изготовленной детали, медленную скорость производства и значительными ограничениями на минимальный размер стенок, накладываемыми диаметром сопла. Также при печати требуется поддерживающий материал.<ref group="original-sources" name="14-additive-fabrication"/><ref group="original-sources" name="16-dao"/> (рис. 2)
=== B. Tree-Dimensional Printing (3DP) ===
[[Файл:Am-3dp.jpg|thumb|Рис. 3 -- Three-Dimensional Printing (3DP)]]
 
Слой за слоем, пудра из материала выкладывается тонким слоем и струйная печатающая головка с жидким связующим веществом склеивает частицы материала вместе<ref group="original-sources" name="16-dao"/> (рис. 3.) Материалы для 3D-печати включают в себя полимеры, керамику, песок и металлическую пудру (например, из нержавеющей стали.) Технология известна быстрой скоростью печати, грубостью поверхности изготовленной детали, непрочными деталями и возможностью многоцветной печати. Поддерживающий материал не требуется, но требуется пост-обработка и укрепление детали.<ref group="original-sources" name="14-additive-fabrication"/> В данной технологии могут быть использованы биосовместимые и биоразлагаемые материалы, однако сложен процесс поиска правильного связывающего вещества. Из-за размера зерна расходного материала, наличия связывающего материала и методов пост-обработки, технология 3DP имеет ограничения в использовании био-молекул и в минимальном размере создаваемого объекта.<ref group="original-sources" name="17-bose"/>
=== C. Stereolithography (STL или SLA) ===
[[Файл:Am-stl.jpg|thumb|Рис. 4 -- Stereolithography (STL/SLA)]]
 
Ультрафиолетовый лазер фокусируется на ёмкости с фоточувствительным полимером, очерчивая контуры одного слоя объекта за один проход. Эта технология известа высоким качеством поверхности напечатанного объекта и высокой детализацией, средней скоростью печати и широким спектром доступных материалов. Стереолитография требует создание поддержек, их последующее удаление и пост-обработку.<ref group="original-sources" name="14-additive-fabrication"/><ref group="original-sources" name="16-dao"/>
=== D. Selective Laser Sintering (SLS) ===
[[Файл:Am-sls.jpg|thumb|Рис. 5 -- Selective Laser Sintering (SLS)]]
 
Технология SLS комбинирует выборочное отвердение исходного материала в SLA и склейку измельчённого в пудру материала из 3DP. В целом эта технология известна средним качеством поверхности из-за размеров частиц исходного материала,<ref group="original-sources" name="16-dao"/> хорошей стабильностью и функциональностью готового изделия, быстротой печати и широким спектром материалов -- таких, как резино-подобные материалы (SOMOOS), био-совместимые и био-разлагаемые полимеры и металлические композиты, применимые в условиях высоких температур. Технология SLS не требует поддерживающий материал, и напечатанным деталям требуется лишь минимальная пост-обработка<ref group="original-sources" name="14-additive-fabrication"/> (рис. 5.)
=== E. Нано-материалы и импланты ===
[[Файл:Am-scaffolds.jpg|thumb|Рис. 6 -- Скаффолды для периоднтальной регенерации,, произведённые аддитивным способом: (a) Biphasic scaffold facilitating fiber orientation (b) Biphasic scaffold in combination with cell sheet technology (c) Enhanced biphasic scaffold (d)
Triphasic scaffold (e) First additively bio manufactured scaffold for
periodontal regeneration applied in human]]
 
Физические и химические характеристики обычных макро-материалов полностью отличаются по сравнению с более мелкими наночастицами; в частности, квантовые эффекты становятся более явными для частиц материи размером 100нм или меньше.<ref group="original-sources" name="4-sichert"/> Одно из свойств нано-материалов, заключающийся в пропорционально большой площади поверхности по сравнению с объёмом, позволяет нанофазным материалам более легко вступать в реакцию с окружающими структурами. Некоторые исследователи показали, что нанокристаллический слой способствует росту и связке окружающей костной ткани.<ref group="original-sources" name="18-murphy"/><ref>Добавил 18-ю ссылку, хотя в оригинале на неё авторы не ссылаются. Судя по контексту, это -- самое подходящее место. -- [[User:avp|avp]]</ref> In vitro исследования также показали, что костнообразующие клетки (остеобласты) лучше прикрепляются и поставляют больше кальция на материалы с размером зерна в микрометрическом диапазоне.<ref group="original-sources" name="6-shrivastava"/> Надлежащее, координированное функционирование всех клеток необходимо для формирования и поддержания здоровой костной ткани и, таким образом, надёжной связи между имплантом и окружающей костью.<ref group="original-sources" name="5-park"/> Это крайне важно для имплантов, которые прикрепляются без использования костного цемента. Тонкий слой нанокристаллической структуры на искусственных имплантах, таких, как искусственные бёдра (которые обычно изготавливаются из титана или сплавов кобальта и хрома) может помочь уменьшить проблемы износа или разнашивания импланта. Нанокристаллическая структура более жёсткая, гладкая, является хорошим связующим, и, как результат, приводит к большему сопротивлению к износу искусственного сочленения, который обычно изготавливается из специального вида полиэтилена. Гидроксиапатит являтся натуральным компонентом кости, 70% которой состоит из гидроксиапатита, и 30% состоит из органических волокон (коллагена.) Покрытие гидроксиапатитом с размером зерна в нанометровом диапазоне вместо микрометрового делает имплант более биосовместимым и более похожим на естесственный гидроксиапатит кости, который также имеет нанокристаллическую структуру (с размером зерна менее 50нм.) Наночастицы гидроксиапатита также могут быть использованы для восстановления костной ткани повреждённой кости, что было впервые показано в Маастрихском университетском госпитале ([https://en.wikipedia.org/wiki/Maastricht_UMC%2B Maastricht UMC+]) в 2000-м году, при использовании искусственного бедра с нанокристаллическим слоем гидроксиапатита. Кроме гидроксиапатита, другие материалы, такие, как алмаз или керамика, могут быть использованы при создании импланта.<ref group="original-sources" name="6-shrivastava"/>